duminică, 1 iunie 2014

Ford Mustang


Ford Mustang 

(fabricatie)


Cum se fabrica Mustang?






Ford Mustang este un automobil fabricat de Ford Motor Company începând cu 1964. Tot atunci Ford introduce clasa de automobile „pony car” (mașina ponei).

Mustangul, al treilea nume ca vechime care este și acum produs de Ford, a trecut prin multe schimbări până a ajunge la a cincea generație.

Numele se trage de la avionul de luptă P-51 Mustang din Al Doilea Război Mondial, al cărui fan era stilistul mașinii: Pres Harris. O altă propunere de nume a venit, se pare, de la Robert J. Egger, un alt om important în companie. Acesta a primit cadou o carte numită „The Mustangs” de la care i-ar fi venit ideea numelui. În Germania nu s-a putut folosi numele până în 1978 iar până atunci a fost vândut în Germania sub numele „T-5”.


Prima generație (1964-1973)





Mustangul avea 2 locuri, motorul montat pe mijloc și era o mașina de tip deschis(eng: roadster). Modelul cu 2 locuri a fost înlocuit cu unul de 4 modelat de Joe Oros și echipa lui de designeri, câștigând astfel concursul de design. Un Mustang a apărut și în filmul Goldfinger din seria James Bond, fiind prima apariție într-un film a mașinii(1964). Pentru a reduce costurile de producție s-a apelat la piese comune cu alte modele care erau deja în producție de Ford(modelele Falcon și Fairline). Vânzările au fost neașteptate, peste un milion de bucăți în 18 luni. Motorul de Falcon cu care a fost dotat modelul din '64 avea capacitatea de 2,8 litrii și 101 cp dar a fost înlocuit cu unul V8 de 4,7 litri.


Generația a doua(1974-1978)





Președintele Ford Motor Company a vrut o mașină mai mică și mai eficientă la consumul de combustibil pentru anul 1974. Aceasta se baza pe modelul Pinto de la Ford.

Introducerea noului model chiar înaintea crizei de petrol a putut face față concurenței pentru coupe-urile sport ca Toyota Celica. Oricum vânzările au scăzut față de originalul Mustang. Puterea a fost redusă și greutatea mărită dotorită normelor Statelor Unite de poluare și siguranță. Ca opțiune avea un motor de 5L dar și unul economic.

Ca versiuni au fost:
  • versiunea de bază - Hardtop - 2,3 litrii
  • 302 - avea capacitate cilindrică de 302 cubic-inch(5 litrii)
  • Stallion
  • Ghia
  • King Cobra - ediție limitată

Versiunea de 2,3 litrii a fost numită și MPG(miles per gallon) deoarece era o variantă mai economică, consumul era în jur de 10L/100Km în oraș și 6,9L/100Km pe autostradă.


Generația a treia (1979–1986)



A treia generatie de mustang a fost construita în 1979, sub conducerea lui Jack Teniac.

În 1982,a fost reintrodusa versiune GT. Acesta ar trebuit să fie un model cu performante inalte, o adevarata muscle car. Motorul adoptat de către acest model era un Windsor V8 5.0 L cu o putere de 157 CP (134 kW). Transmisia avea patru trepte. Masina a fost promovata cu sloganul The Boss is Back. De-a lungul anilor, puterea a fost marita și a atins, în 1987, 225 CP (168 kW).


Generația treia restyling(1987-1993)



De asemenea, în 1987, Mustang-ul a suferit, după opt ani, o importanta restilizare. Această revizuire se referă atât la caroserie cat și la interior. Popularitatea Mustang-ului a rămas neschimbata în timp, datorită costurilor reduse cat și performanței acestuia. De asemenea, în jurul aceastei masini sa născut o piață mare pentru piese, care a crescut în popularitate.

La sfârșitul anilor optzeci au inceput sa scada vânzările de Mustang. Oprinduse in jurul la 100.000 de unitati pe an.

Ford a anuntat intentia de a opri productia pentru a o înlocui cu modelul Pobe. Cu toate acestea, fanii au inundat Casa cu sute de mii de scrisori pentru salvarea acestui model.

Astfel, Ford a acordat o șansă suplimentară acestei mașini, dar numai în cazul în care vânzările ar fi rămas la niveluri bune. În caz contrar, productia s-ar fi oprit.

Când a fost prezentat noul model, care a fost extensiv revizuit, succesul a fost mai mare decât se aștepta și, prin urmare, modelul a fost ținut în producție.

Generația a patra (1994–2004)




In 1994 Mustang a suferit prima sa reproiectare majora din ultimii cincisprezece ani. Cu numele de cod "SN-95", de automobile, a fost bazat pe o versiune actualizata a platformei cu tractiune spate Fox numit "Fox-4". Stilul nou, conceput de catre Patrick Schiavone, aveau incorporate mai multe repere de stilizare de la Mustangurile mai vechi. Pentru prima data din 1974, un model hatchback coupe a fost indisponibil. Pentru 1999, Mustang a primit o noua tema de stilizare, cu contururi mai clare, aripi mai mari, cute in caroserie, design interior, si un sasiu ca al modelelor precedente. Motorizarile Mustang au fost reportate pentru anul 1999, dar au beneficiat de imbunatatiri noi. Standardul 3.8 L V6 a avut un nou de sistem de inducție, si a fost evaluat la 190 CP (140 kW), in timp ce Mustang GT de 4,6 l V8 a vazut o crestere in putere la 260 CP (190 kW), ca urmare a unui design nou si altor imbunatatiri. Au fost, de asemenea, trei modele alternative oferite in aceasta generatie: Bullitt, Mach 1, si Cobra.

Generația a cincea (2005-prezent)


Fractalii

 

Fractalii





Colocvial, un fractal este "o figură geometrică fragmentată sau frântă care poate fi divizată în părți, astfel încât fiecare dintre acestea să fie (cel puțin aproximativ) o copie miniaturală a întregului". Termenul a fost introdus de Benoît Mandelbrot în 1975 și este derivat din latinescul fractus, însemnând "spart" sau "fracturat".

Fractalul, ca obiect geometric, are în general următoarele caracteristici:
  • Are o structură fină la scări arbitrar de mici.
  • Este prea neregulat pentru a fi descris în limbaj geometric euclidian tradițional.
  • Este autosimilar (măcar aproximativ sau stochastic).
  • Are dimensiunea Hausdorff mai mare decât dimensiunea topologică (deși această cerință nu este îndeplinită de curbele Hilbert).
  • Are o definiție simplă și recursivă.

Deoarece par identici la orice nivel de magnificare, fractalii sunt de obicei considerați ca fiind infinit complecși (în termeni informali). Printre obiectele naturale care aproximează fractalii până la un anumit nivel se numără norii, lanțurile montane, arcele de fulger, liniile de coastă și fulgii de zăpadă. Totuși, nu toate obiectele autosimilare sunt fractali—de exemplu, linia reală (o linie dreaptă Euclidiană) este autosimilară, dar nu îndeplinește celelalte caracteristici.


Etimologie

Cuvântul fractal provine din latinul fractuus, ce derivă din verbul frangere care înseamnă "a rupe", "a fragmenta", "a frânge".

Istorie



Încă din cele mai vechi timpuri, oamenii au încercat să-și explice anumite fenomene, prin intermediul unor modele, care la început au fost simpliste, dar aproximând natura. Odată cu evoluția științei, modelele devin tot mai complexe și se apropie tot mai mult de fenomenele reale observate. Astfel, geometria clasică, euclidiană, lucrează cu figuri geometrice simple. Apariția geometriilor neeuclidiene (ai căror fondatori au fost Lobacevski și Bolyai) a condus la o reconsiderare a vechilor teorii.

Matematica din spatele fractalilor a apărut în secolul 17, când filosoful Gottfried Leibniz a considerat autosimilaritatea recursivă (deși greșise gândindu-se că numai liniile drepte sunt autosimilare în acest sens).

În a doua parte a secolului al XIX-lea și începutul secolului XX, anumiți matematicieni semnalează existența unor entități geometrice excepționale, fără nicio asemănare cu figurile și corpurile studiate până atunci. Printre acestea se numără curba lui Koch, o curbă de lungime infinită ce limitează o arie finită și care nu admite tangentă în niciun punct al acesteia și dimensiunea Hausdorff, obiect geometric care nu are dimensiunea întreagă.

În 1872 a apărut o funcție al cărei grafic este considerat azi fractal, când Karl Weierstrass a dat un exemplu de funcție cu proprietatea că este continuă, dar nediferențiabilă. În 1904, Helge von Koch, nesatisfăcut de definiția abstractă și analitică a lui Weierstrass, a dat o definiție geometrică a unei funcții similare, care se numește astăzi fulgul lui Koch. În 1915, Waclaw Sierpinski a construit triunghiul și, un an mai târziu, covorul lui Sierpinski. La origine, acești fractali geometrici au fost descriși drept curbe în loc de forme bidimensionale, așa cum sunt cunoscute astăzi. Ideea de curbe autosimilare a fost preluată de Paul Pierre Lévy, care, în lucrarea sa Curbe și suprafețe în plan sau spațiu formate din parți similare întregului din 1938, a descris o nouă curbă fractal, curba C a lui Lévy.

Georg Cantor a dat, de asemenea, exemple de submulțimi ale axei reale cu proprietăți neobișnuite — aceste mulțimi Cantor sunt numite astăzi fractali.

Funcțiile iterate în planul complex au fost investigate la sfârșitul secolului 19 și începutul secolului 20 de Henri Poincaré, Felix Klein,Pierre Fatou și Gaston Julia. Totuși, fără ajutorul graficii pe calculator moderne, ei nu puteau vizualiza frumusețea numeroaselor obiecte pe care le descoepriseră.

Cel care își dă seama că asemenea ciudățenii matematice nu constituie doar un exercițiu de imaginație și că se regăsesc în natură a fost Benoît Mandelbrot. Acesta observă că forma unui munte nu este o piramidă sau un con, trunchiul îmbrăcat cu scoarță al unui copac nu este un cilindru perfect neted, norii nu sunt sfere. Așadar, în natură nu întâlnim forme geometrice simple, regulate, ci forme cu un grad înalt de complexitate și unicitate. Din această observație s-a născut o nouă știință care studiază aceste forme complexe, știință ce poartă denumirea de geometrie fractală.

În anii 1960, Mandelbrot a început să cerceteze autosimilaritatea în lucrări precum Cât de lungă este coasta Marii Britanii? Autosimilaritate statistică și dimensiune fracțională. În sfârșit, în 1975, Mandelbrot a inventat termenul "fractal" pentru a denumi un obiect al cărei dimensiune Hausdorff-Besicovitch este mai mare decât dimensiunea topologică a sa. A ilustrat această definiție matematică cu imagini construite pe calculator.

Exemple






O clasă de exemple simple este dată de mulțimile Cantor, triunghiul și covorul lui Sierpinski, buretele lui Menger, curba dragon, curba lui Peano și curba Koch. Alte exemple de fractali sunt fractalul lui Lyapunov și mulțimile limită ale grupurilor Kleiniene. Fractalii pot fideterminiști (toți cei anteriori) sau stocastici (adică nedeterminiști). De exemplu, traiectoriile mișcării browniene în plan au dimensiunea Hausdorff 2.

Sistemele haotice dinamice sunt uneori asociate cu fractalii. Obiectele din spațiul fazelor dintr-un sistem dinamic pot fi fractali (veziatractor). Obiectele din spațiul parametrilor al unei familii de sisteme pot fi de asemenea fractali. Un exemplu interesant este mulțimea lui Mandelbrot. Această mulțime conține discuri întregi, deci are dimensiunea Hausdorff egală cu dimensiunea topologică (adică 2) — dar ceea ce este surprinzător este că granița mulțimii lui Mandelbrot are de asemenea dimensiunea Hausdorff 2 (în timp ce dimensiunea topologică este 1), un rezultat demonstrat de Mitsuhiro Shishikura în 1991. Un fractal foarte înrudit este mulțimea Julia.

Chiar și la curbele simple se poate observa proprietatea de autosimilaritate. De exemplu, distribuția Pareto produce forme similare la diferite niveluri de grosisment.

Autosimilaritate



Mandelbrot folosește termenul fractal în sensul de "neregulat", iar definiția pe care o formulează este:


"... un ansamblu care prezintă aceleași neregularități la orice scară ar fi privit."

Așadar, din punct de vedere geometric, fractalul este un anasamblu ale cărui părți sunt într-o bună măsură identice cu întregul. Această proprietate se numește autosimilaritate.

Într-un mod sugestiv se poate spune că dacă un obiect de o complexitate geometrică este privit de la o anumită distanță, apoi făcând un zoom este privit din nou și repetând procedeul la infinit, imaginea care se vede este aceeași.

În 1958 Kolmogorov introduce conceptul de dimensiune de autosimilaritate (de capacitate) în următorul mod:

Să presupunem un segment de dreaptă, un pătrat și un cub care sunt reduse la scara s (s < 1). Se obțin noi obiecte similare în număr de: pentru segment, pentru pătrat, (1) pentru cub.

Dar dimensiunea topologică a segmentului este 1, a pătratului este 2, iar a cubului este 3, în care caz se poate scrie la modul general că: (2)

de unde prin logaritmare rezultă: (3)

Numărul D poartă denumirea de dimensiune de autosimilaritate sau de capacitate. Mai târziu, aceasta este denumită și dimensiune Hausdorff.


Aplicații ale geometriei fractale




Fractalii în stiință


Aplicabilitatea geometriei fractale nu se rezumă doar la fenomene statice, ci și în studiul fenomenelor dinamice, în evoluție, cum ar fi fenomenele de creștere în biologie sau de dezvoltare a populațiilor urbane.
Fractalii în natură
Un fractal care modelează suprafaţa unui munte (animaţie)

Fractali aproximativi sunt ușor de observat în natură. Aceste obiecte afișează o structură auto-similară la o scară mare, dar finită. Exemplele includ norii, fulgii de zăpadă, cristalele, lanțurile montane, fulgerele, rețelele de râuri, conopida sau broccoli și sistemul de vase sanguine și vase pulmonare.
Un fractal ferigă obţinut printr-un sistem de funcţii iterate

Arborii și ferigile sunt fractali naturali și pot fi modelați pe calculator folosind un algoritm recursiv. Natura recursivă este evidentă în aceste exemple — o ramură a unui arbore sau o frunză a unei ferigi este o copie în miniatură a întregului: nu identice, dar similare.

În 1999, s-a demonstrat despre anumite forme de fractali auto-similari că au o proprietate de "frequency invariance" — aceleași proprietăți electromagnetice indiferent de frecvență — din Ecuațiile lui Maxwell
Fractalii în artă

Tipare de fractali au fost descoperite în picturile artistului american Jackson Pollock. Deși picturile lui Pollock's par a fi doar stropi haotici, analiza computerizată a descoperit tipare de fractali în opera sa.

Fractalii sunt de asemenea predominanți în arta și arhitectura africană. Casele circulare apar în cercuri de cercuri, casele dreptunghiulare în dreptunghiuri de dreptunghiuri și așa mai departe. Astfel de tipare se găsesc și în textile și sculpturile africane, precum și în părul împletit în codițe.

Inducție electromagnetică



Inducție electromagnetică




Se numeste inductie electromagnetica fenomenul de generare a unei tensiuni electromotoare într-un circuit strabatut de un flux magnetic variabil în timp . Fenomenul de inductie electromagnetica a fost pus în evidenta experimental de M. Faraday(1831).

Daca circuitul strabatut de fluxul magnetic variabil este deschis, în el se induce o tensiune electromotoare numita tensiune indusa (fig.1). Daca circuitul strabatut de fluxul magnetic variabil este închis , în el se induce un curent electric numit curent indus fig.2. Generarea curentului indus demonstreaza existenta unui cîmp electric indus (fig.2)

S-a demonstrat teoretic si experimental ca în jurul unui cîmp magnetic variabil în timp apare un cîmp electric cu linii de cîmp închise (fig.3)

Legea inductiei electromagnetice (legea lui Faraday)

Tensiunea electromotoare indusa într-un circuit este egala cu viteza de variatie a fluxului magnetic prin suprafata acelui circuit.

φ = AB cos α

φ - flux magnetic

A- suprafata de arie a spirei

B- inductia cîmpului magnetic

cos α-unghiul dintre vectorul inductiei B si vectorul n normal la suprafata spirei

e = - Δ φ /Δt - tensiunea indusa

Pentru a se obtine flux magnetic variabil se poate modifica aria A , inductia B a cîmpului magnetic în care se afla plasata spira sau unghiul a dintre vectorul B si vectorul n normal la suprafata spirei .



Autoinductia


Este fenomenul de inductie electromagnetica produs într-un circuit datorita variatiei intensitatii curentului din acel circuit . Sensul t.e.m. induse se poate afla cu ajutorul regulii lui Lenz.


Regula lui Lentz


Tensiunea electromotoare indusa si curentul indus au astfel de sens , încît fluxul magnetic produs de curentul indus sa se opuna fluxului magnetic inductor .

Schema Electronica:



Sensul curentului generat























Experiment Fizica - Inductia Electromagnetica 1
https://www.youtube.com/watch?v=2PkPVGC8ceg



    Experiment Fizica - Inductia Electromagnetica 2
    https://www.youtube.com/watch?v=gpjw0I6nK_8

Armă nucleară


Armă nucleară





Dicționarele definesc arma nucleară ca un dispozitiv ce eliberează într-o manieră explozivă energia nucleară produsă de o reacție în lanț de fisiune, sau fisiune și fuziune.

Arma nucleară face parte din categoria armelor de distrugere în masă destinate uciderii unui mare număr de oameni și/sau distrugerii structurilor construite de om, sau biosferei în general.
Prima armă nucleară cu fisiune a eliberat o cantitate de energie echivalentă cu cea rezultată din explozia a 20.000 tone de TNT (trinitrotoluen), în timp ce prima armă termonucleară (cu fisiune și fuziune) a eliberat o energie echivalentă cu 10.000.000 tone de TNT. La nivelul anului 2012 pe plan mondial existau circa 19.000 de focoase nucleare din care 4.400 sunt menținute în stare operațională, gata oricând pentru a fi utilizate.

Distrugerea reciprocă este asigurată în cazul folosirii acestora împotriva unei entității care posedă arme nucleare.







Tipuri


În prezent există două tipuri de arme nucleare: cele bazate exclusiv pe reacția de fisiune nucleară și cele care utilizează fisiunea nucleară pentru amorsarea reacției de fuziune nucleară.
Armele bazate pe fisiunea nucleară constau dintr-o cantitate de uraniu îmbogățit care formează o masă supra-critică în care se dezvoltă exponențial reacția în lanț. Masa supra-critică se realizează fie prin implantarea unei piese din material fisionabil în masa subcritică (metoda proiectilului) fie prin comprimarea (cu explozivi chimici) unei sfere de material fisionabil până se atinge masa supra-critică (metoda imploziei).
Arma nucleară cu fuziune (arma termonucleară, bomba cu Hidrogen) folosește energia rezultată din fisiune pentru a comprima și încălzi deuteriul și tritiul până aceștia fuzionează.
Există și arme nucleare cu destinații speciale precum arma cu neutroni sau arma cu contaminare radioactivă. Arma cu neutroni este o armă termonucleară construită special pentru a produce un flux mare de neutroni ce produce multe decese dar nu produce contaminare radioactivă și nu afectează construcțiile. Arma cu contaminare este o armă cu fisiune învelită cu un material (cobalt, aur) care produce o contaminare radioactivă extrem de puternică.
Din punct de vedere al strategiei militare armele nucleare se împart în : arme strategice (care vizează țări sau populații mari) sau tactice (utilizate numai pe câmpul de luptă). Armele nucleare strategice sunt transportate la țintă cu avioane sau rachete. Armele tactice sunt transportate cu rachete, artilerie, torpile, etc.
În perioada 1960-1980 SUA și URSS au folosit dispozitive explozive bazate pe energie nucleară pentru scopuri comerciale (explozii nucleare pașnice). Tratatul de eliminare a testelor nucleare din 1966 a interzis toate exploziile nucleare, indiferent de scopul lor.


Efecte




Explozia nucleară are efecte imediate și întârziate. Unda de șoc, radiația termică, radiația ionizantă promptă produc distrugeri mari în câteva secunde sau minute de la detonare. Efectele întârziate precum căderile radioactive acționează pe perioade mari de timp, de la ore la ani.
Unda de șoc produce modificarea bruscă a presiunii aerului și vânturi puternice.

Construcțiile mari sunt distruse de modificarea presiunii aerului în timp ce vânturile puternice distrug vegetația și omoară oamenii. Dacă explozia are loc la suprafața sau în apropierea solului se produce un crater din care materialul este ridicat în atmosferă, de unde revine sub forma de depuneri radioactive.
Circa 35% din energia exploziei este sub forma de radiație luminoasă și termică (căldură). Radiația luminoasă produce orbirea prin arderea retinei. Radiația termică produce arsuri ființelor vii și incendierea materialelor combustibile.
Efectele radiațiilor nucleare directe sunt în general mai mici decât cele ale undei de șoc sau radiației termice. La armele cu neutroni spre exemplu efectul radiației directe (neutroni) este cel mai puternic. Iradierea directă cu radiații nucleare duce la deces sau în cazul dozelor mai mici la boala de iradiere.
Particulele radioactive ridicate în atmosferă (norul în formă de ciupercă) revin pe pământ în apropierea locului exploziei. Ele nu produc multe decese deoarece afectează zona unde oamenii au fost deja uciși de celelalte efecte. În funcție de condițiile meteorologice, norul radioactiv poate fi deplasat la distanțe mari iar depunerile pe sol pot afecta zonele mai îndepărtate.
Undele electromagnetice produse de explozie rezultă prin absorbția radiației gama în aer și în sol. Pulsul de unde electromagnetice generează câmpuri electrice de mii de volți pe durate extrem de scurte. Consecințele privesc în special comunicațiile și rețelele electrice.


Istoric






Istoria armei nucleare începe cu scrisoarea trimisă de Albert Einstein la 2 august 1939 președintelui Franklin D. Roosevelt. La scurt timp guvernul SUA a lansat proiectul de realizare a armei nucleare cunoscut sub numele de “Proiectul Manhattan”.

Deoarece pentru realizarea armei nucleare era nevoie de uraniu îmbogățit a fost construită la Oak Ridge – Tennessee o instalație de îmbogățire prin procedeul de difuzie gazoasă, pus la punct de Harold Urey, iar la Universitatea California Ernest Lawrence a pus la punct procedeul separării magnetice a izotopilor uraniului. Pe parcursul a șase ani, 1939-1945 în proiectul Manhattan au fost cheltuiți peste 2 miliarde de dolari. La proiectul Manhattan au participat a pleiadă de savanți conduși de Robert Oppenheimer: David Bohm, Leo Szilard, Eugene Wigner, Otto Frisch, Rudolf Peierls, Felix Bloch, Niels Bohr, Emilio Segre, Enrico Fermi, Klaus Fuchs, Edward Teller. Prima armă nucleară a fost testată la 16 iulie 1945 în deșertul New Mexico.

Armele nucleare s-au folosit împotriva oamenilor doar de două ori, și anume în anul 1945 în jurul încheierii celui de-al doilea război mondial, când SUA au aruncat câte o singură bombă atomică cu fisiune asupra orașelor japoneze Hiroshima și Nagasaki. Primul eveniment a avut loc în dimineața zilei de 6 august 1945, când Statele Unite ale Americii au aruncat un dispozitiv tip pistol, cu uraniu, cu codul „Little Boy” (Băiețelul), asupra orașului Hiroșhima. Al doilea eveniment a avut loc după trei zile, la 9 august 1945, când un dispozitiv tip implozie, cu plutoniu, cu codul „Fat Man” (Grasul), a fost aruncat asupra orașului Nagasaki. Norul, sau „ciuperca” acestei bombe s-a înălțat mai mult de 18 kilometri deasupra hipocentrului exploziei.

Folosirea acestor 2 bombe, din care a rezultat moartea imediată a aproximativ 100.000 – 200.000 de oameni (majoritatea civili) și chiar și mai mulți cu trecerea timpului, a fost și rămâne controversată. Criticii spun că a fost un act de omucidere în masă inutil, în timp ce alții sunt de părere că de fapt s-a limitat numărul de victime de ambele părți prin grăbirea sfârșitului războiului și evitarea unor lupte sângeroase pe teritoriul Japoniei; de asemenea se aduce argumentul reducerii înaintării sovietice (și comuniste) în Asia drept una din consecințele acestor bombe.


Dezarmarea și neproliferarea



Tratatul de neproliferare nucleară are ca obiectiv prevenirea răspândirii armelor nucleare și a tehnologiilor de fabricare a acestora, promovarea cooperării în domeniul utilizării pașnice a energiei nucleare și în final dezarmarea nucleară.

Deschis pentru semnare în 1968 tratatul a intrat vigoare în 1970 și în prezent este semnat de 190 de state inclusiv cele 5 state deținătoare în mod oficial de arme nucleare. Pentru asigurarea neproliferării și întărirea încrederii între statele semnatare tratatul stabilește un sistem de garanții nucleare în reponsabilitatea AIEA. Tratatul promovează cooperarea și accesul egal al statelor la utilizarea pașnică a energiei nucleare și în același timp previne deturnarea materialului fisionabil pentru fabricarea de arme.

Riscul proliferării armelor nucleare nu este complet eliminat deoarece unele țări precum India (80-110 focoase active), Pakistan (90-110 focoase active), Coreea de Nord (10 focoase active) și Israel (75-200 focoase active) nu au semnat tratatul și au dezvoltat în secret arsenale nucleare.

În 1996, la solicitareaONU Curtea Internațională de Justițiea emis o opinie consultativă privind « Legalitatea amenințării sau folosirii armelor nucleare ». Curtea a stabilit că amenințarea sau folosirea armelor nucleare ar putea viola diferite articole ale dreptului internațional, inclusiv Convenția de la Geneva, Convenția de la Haga, carta ONU șiDeclarația universală a drepturilor omului.

Impactul asupra mediului


Producerea și testarea armelor nucleare în Rusia (fosta URSS) a condus la contaminarea excesivă a anumitor regiuni, peste limitele admisibile

Numai suprafața contaminată de activitățile Minatom depășește 480 km2. O problemă gravă privește stocarea necorespunzătoare a deșeurilor nucleare. Circa 650 milioane m3 de deșeuri stocate de Minatom conțin o activitate de 2 miliarde de Ci. Alte organizații dețin 12 000 tone de combustibil ars cu o activitate de 8,2 miliarde de Ci. În plus, cantități foarte mari de ape puternic contaminate (1,5 miliarde Ci) au fost injectate în subteran sau pur și simplu aruncate în lacurile sau râurile din apropiere. Din cele 184 submarine nucleare scoase din uz acum 10-15 ani 104 au rămas cu combustibilul ars la bord, iar starea lor precară reprezintă un mare pericol pentru mediu.

Începând din 1989 SUA a înființat la Departamentul Energiei un oficiu dedicate eliminării riscurilor asociate moștenirii Războiului Rece.

Cea mai mare parte din această moștenire radioactivă provine din instalațiile de producere a uraniului îmbogățit și a plutoniului (minele de uraniu, prelucrarea chimică a uraniului, îmbogățirea, fabricarea combustibilului și a țintelor, iradierea în reactor, separarea chimică a plutoniului). Deșeurile generate la extragerea plutoniului reprezintă 85% din radioactivitatea asociată producerii armamentului nuclear, 71 % din apele contaminate și 33 % din terenurile contaminate.

Activitățile de producere a armamentului nuclear au lăsat o moștenire de 1500 milioane metri cubi de ape contaminate (inclusive ape subterane) și 73 milioane metri cubi de solide contaminate.

Machete de tren

Machete de tren

(fabricatie)

Cum se fabrica trenurile in miniatura?


Henri Coandă


Henri Coandă




Henri Marie Coandă (n. 7 iunie 1886 - d. 25 noiembrie 1972) a fost un academician și inginer român, pionier al aviației, fizician, inventator, inventator al motorului cu reacție și descoperitor al efectului care îi poartă numele. A fost fiul generalului Constantin Coandă, prim-ministru al României în 1918.

Biografie


Henri Coandă s-a născut la București la 7 iunie 1886, fiind al doilea copil al unei familii numeroase. Tatăl lui a fost generalul Constantin Coandă, fost profesor de matematică la Școala națională de poduri și șosele din București și fost prim-ministru al României pentru o scurtă perioadă de timp în 1918. Mama sa, Aida Danet, a fost fiica medicului francez Gustave Danet, originar din Bretania.

Încă din copilărie viitorul inginer și fizician era fascinat de miracolul vântului, după își va și aminti mai târziu. Henri Coandă a fost mai întâi elev al Școlii Petrache Poenaru din București, apoi al Liceului Sf. Sava 1896 unde a urmat primele 3 clase, după care, la 13 ani, a fost trimis de tatăl său, care voia să-l îndrume spre cariera militară, la Liceul Militar din Iași 1899. Termină liceul în 1903 primind gradul de sergent major și își continuă studiile la Școala de ofițeri de artilerie, geniu și marină din București.

Detașat la un regiment de artilerie de câmp din Germania 1904, este trimis la Technische Hochschule (Universitatea Technică) din Berlin-Charlottenburg. Pasionat de probleme tehnice și mai ales de tehnica aviaticii, în 1905 Coandă construiește un avion-rachetă pentru armata română. Între 1907-1908 a urmat de asemenea cursuri universitare în Belgia, la Liège, și la Institutul tehnic Montefiore. În 1908 se întoarce în țară și e încadrat ofițer activ în Regimentul 2 de artilerie. Datorită firii sale și spiritului inventiv care nu se împăcau cu disciplina militară, el a cerut și obținut aprobarea de a părăsi armata, după care, profitând de libertatea recâștigată, a întreprins o lungă călătorie cu automobilul pe ruta Isfahan - Teheran - Tibet. La întoarcere pleacă în Franța și se înscrie la Școala superioară de aeronautică și construcții, nou înființată la Paris 1909, al cărei absolvent devine în anul următor 1910, ca șef al primei promoții de ingineri aeronautici.


Marcă poștală românească cu Henri Coandă tânăr, emis de ziua aviației 1978.
Marcă poștală moldovenescă cu Henri Coandă vârstnic, emisă în anul 2000.


Cu sprijinul inginerului Gustave Eiffel și savantului Paul Painlevé, care l-au ajutat să obțină aprobările necesare, Henri Coandă a efectuat experimentele aerodinamice prealabile și a construit în atelierul de carosaj al lui Joachim Caproni primul avion cu propulsie reactivă de fapt un avion cu reacție, fără elice, numit convențional Coandă-1910 pe care l-a prezentat la al doilea Salon internațional aeronautic de la Paris 1910.

În timpul unei încercări de zbor din decembrie 1910, pe aeroportul Issy-les-Moulineaux de lângă Paris, aparatul pilotat de Henri Coandă a scăpat de sub control din cauza lipsei lui de experiență, s-a lovit de un zid de la marginea terenului de decolare și a luat foc. Din fericire, Coandă a fost proiectat din avion înaintea impactului, alegându-se doar cu spaima și câteva contuzii minore pe față și pe mâini. Pentru o perioadă de timp, Coandă a abandonat experimentele datorită lipsei de interes din partea publicului și savanților vremii. Între 1911-1914 Henri Coandă a lucrat ca director tehnic la Uzinele de aviație din Bristol, Anglia și a construit avioane cu elice de mare performanță, de concepție proprie. În următorii ani se întoarce în Franța, unde a construit un avion de recunoaștere 1916 foarte apreciat în epocă, prima sanie-automobil propulsată de un motor cu reacție, primul tren aerodinamic din lume și altele. În 1934 obține un brevet de invenție francez pentru Procedeu și dispozitiv pentru devierea unui curent de fluid ce pătrunde într-un alt fluid, care se referă la fenomenul numit astăziEfectul Coandă", constând în devierea unui jet de fluid care curge de-a lungul unui perete convex, fenomen observat prima oară de el în 1910, cu prilejul probării motorului cu care era echipat avionul său cu reacție. Această descoperire l-a condus la importante cercetări aplicative privind hipersustentația aerodinelor, realizarea unor atenuatoare de sunet și altele.

Henri Coandă revine definitiv în țară în 1969 ca director al Institutului de creație științifică și tehnică (INCREST), iar în anul următor, 1970, devine membru al Academiei Române. Henri Coandă moare la București, pe data de 25 noiembrie 1972, la vârsta de 86 de ani.


Invenții și descoperiri




Dispozitiv pentru măsurători de portanță și rezistentă la deplasarea în aer a diferitelor tipuri de suprafete portante (profile de aripă) cu posibilitatea inregistrării valorilor pe diagrame pentru posibilitatea comparației si stabilirii profilului ideal. Dispozitivul era montat pe un vagon in fața unei locomotive, iar experimentele se desfășurau în mișcare, la o viteză de 90 km/h, pe linia Paris-Saint Quentin. Ulterior a putut face aceste determinări folosind un tunel de vânt cu fum, și o cameră fotografică specială, de concepție proprie. Datorită acestor experimente a stabilit un profil de aripă funcțional pentru viitoarele sale aparate de zbor.
1911: În Reims, Henri Coandă prezintă un aparat de zbor cu două motoare cuplate ce acționau o singură elice.
1911-1914: În calitatea sa de director tehnic al Uzinelor Bristol, Henri Coandă proiectează mai multe aparate de zbor "clasice" (cu elice) cunoscute sub numele de Bristol-Coandă. În 1912 unul dintre ele câștigă premiul întâi la Concursul internațional al aviației militare dinAnglia.
1914-1918: Henri Coandă lucrează la "Saint-Chamond" și "SIA-Delaunay-Belleville" din [Saint Denis]]. În această perioadă proiectează trei tipuri de aeronave, dintre care cel mai cunoscut este Coandă-1916, cu două elici apropiate de coada aparatului. Coandă-1916 este asemănător cu avionul de transport Caravelle, la proiectarea căruia de fapt a și participat.
Invenția unui nou material de construcție, beton-lemnul, folosit pentru decorațiuni (de exemplu la Palatul culturii din Iași, ridicat în 1926, decorat în totalitate cu materialul lui H. Coandă)
1926: În România, Henri Coandă pune la punct un dispozitiv de detecție a lichidelor în sol. E folosit în prospectarea petroliferă.
În Golful Persic inventatorul român construiește un rezervor din beton subacvatic pentru depozitarea petrolului.
"Efectul Coandă". Primele observații le face cu ocazia studierii primului avion cu reacție din lume, Coandă 1910. După ce avionul decola, Henri Coandă observă că flăcările și gazul incandescent ieșite din reactoare tindeau a rămâne pe lângă fuzelaj. Abia după peste 20 de ani de studii ale lui și altor savanți, inginerul român a formulat principiul din spatele așa-numitului efect Coandă, numit astfel de profesorul Albert Metral.


Numismatică



La 10 august 2001, Banca Națională a României a pus în circulație o emisiune comemorativă de trei monede de argint, dedicată unor pionieri ai aviației românești, Traian Vuia, Henri Coandă și Elie Carafoli. Fiecare din cele trei monede au valoarea nominală de 50 de lei, au titlul de 999‰, cântăresc 15,551 grame, au diametrul de 111 mm, fiind emise de calitate « proof »[1]. într-un tiraj de câte 500 de exemplare.
La 11 octombrie 2010, cu prilejul împlinirii a 100 de ani de la primul zbor, în lume, a unui aparat de zbor cu reacție creat de Henri Coandă, Banca Națională a României a pus în circulație, cu scop numismatic, o monedă de argint, comemorativă, într-un tiraj de 1.000 de exemplare, cu valoarea nominală de 10 lei. Moneda este rotundă, are diametrul de 37 mm, este realizată din argint având titlul de 999‰, de calitate proof și are greutatea de 31,103 g. Marginea monedei este zimțată. «Monedele din argint, din emisiunea numismatică „Aniversarea a 100 de ani de la construirea primului aparat de zbor cu reacție de către Henri Coandă”, au putere circulatorie pe teritoriul României.»

marți, 11 iunie 2013


Mecanica cuantică




Mecanica cuantică este teoria mișcării particulelor materiale la scară atomică. Ea a apărut, în primele decenii ale secolului XX, ca rezultat al unui efort colectiv de a înțelege fenomene care în fizica clasică nu-și găseau explicația: structura atomilor și interacția acestora cu radiația electromagnetică. Mecanica cuantică nerelativistă a rezolvat problema structurii atomice; extinsă apoi pentru a ține seama de principiile teoriei relativității, ea a deschis drumul către teoria cuantică relativistă a radiației, numită electrodinamică cuantică. Denumirea de mecanică cuantică a fost păstrată pentru a indica teoria fenomenelor atomice din domeniul energiilor nerelativiste, în care numărul de particule rămâne constant; dezvoltările ulterioare, care studiază procese de creare și anihilare de particule, se încadrează în teoria cuantică a câmpurilor și are legătură cu ramuri experimentale precum cea a fizicii nucleare și a particulelor elementare.

Descrierea dată de mecanica cuantică realității la scară atomică este de natură statistică: ea nu se referă la un exemplar izolat al sistemului studiat, ci la un colectiv statistic alcătuit dintr-un număr mare de exemplare, aranjate în ansamblul statistic după anumite modele. Rezultatele ei nu sunt exprimate prin valori bine determinate ale mărimilor fizice, ci prin probabilități, valori medii și împrăștieri statistice. Două aspecte ale acestei descrieri, de o relevanță care le-a conferit rang de principiu, sunt noțiunile deincertitudine și complementaritate. Relațiile de incertitudine pun în evidență existența unor perechi de mărimi fizice (cum sunt poziția și impulsul, sau componente diferite ale momentului cinetic) care nu pot fi determinate simultan oricât de precis, limita de precizie fiind impusă de existența unei mărimi fizice fundamentale: constanta Planck și fundamentat teoretic de principiul incertitudinii al lui Heisenberg. Descrierea fenomenelor la scară atomică are un caracter complementar, în sensul că ea constă din elemente care se completează reciproc într-o imagine unitară, din punctul de vedere macroscopic al fizicii clasice, numai dacă ele rezultă din situații experimentale care se exclud reciproc.

Interpretarea statistică a mecanicii cuantice este confirmată de experiență, însă persistă opinii divergente asupra caracterului fundamental al acestei descrieri. Pe când în interpretarea de la Copenhaga descrierea statistică este postulată ca fiind completă, reflectând o caracteristică fundamentală a fenomenelor la scară atomică, teorii alternative susțin că statistica rezultă dintr-o cunoaștere incompletă a realității, provenind din ignorarea unor variabile ascunse. Aceste vederi contradictorii pot fi testate experimental; rezultate parțiale par să favorizeze interpretarea de la Copenhaga.


Participanții la Conferința Solvay din 1927.

Evoluția ideilor în fizica cuantică


La sfârșitul secolului al XIX-lea, fizica clasică oferea imaginea unitară a unui Univers alcătuit din materie și radiație. Existau o teorie corpusculară a materiei și o teorie ondulatorie a radiației, capabile să descrie în mod coerent, pe baza unor principii generale, cele două categorii de fenomene. Dificultățile pe care le-au întâmpinat aceste teorii în interpretarea interacțiunii dintre materie și radiație au stimulat dezvoltarea ideilor care, treptat, au dus la formularea mecanicii cuantice și apoi a electrodinamicii cuantice.

Teoria cuantică veche


În teoria radiației electromagnetice în echilibru termodinamic cu materia, distribuția spectrală a intensității radiației emise de un corp negru se afla în violent dezacord cu experiența.Planck (1900) a arătat că dificultatea putea fi ocolită pe baza ipotezei că schimbul de energie între materie și radiație nu se face în mod continuu, ci în cantități discrete și indivizibile, pe care le-a numit cuante de energie (în latină quantum = câtime, cantitate). Einstein (1905) a dus ideea un pas mai departe, postulând că un fascicul luminos constă dintr-un jet de particule (numite apoi fotoni), care reprezintă cuante de energie; pe această bază el a elaborat o teorie cantitativă a efectului fotoelectric, pe care teoria ondulatorie fusese incapabilă să-l explice. O confirmare ulterioară a teoriei fotonului în detrimentul teoriei ondulatorii a venit de la efectul Compton (1924). Analiza experimentelor de interferență și difracție arată că lumina se propagă sub formă de unde; aspectul corpuscular se manifestă însă în procesul emisiei sau absorbției luminii de către materie. Acest caracter dual — corpuscular și ondulatoriu — al radiației este incompatibil cu fizica clasică.

În teoria corpusculară a materiei, descoperirea electronului în razele catodice de către J.J. Thomson (1897) și cercetările asupra împrăștierii razelor alfa efectuate de Rutherford l-au condus pe acesta din urmă la elaborarea unui model al atomului (1911), constituit dintr-un nucleu de mici dimensiuni cu sarcină electrică pozitivă, în jurul căruia gravitează un număr de electroni. Însă atomul lui Rutherford nu putea explica stabilitatea atomilor: electronii în mișcare accelerată, potrivit legilor electrodinamicii a lui Maxwell, trebuia să piardă energie prin radiație și să sfârșească prin a cădea pe nucleu. De asemenea, radiația emisă avea un spectru continuu, în contradicție cu rezultatele experimentale ale spectroscopiei atomice, care indicau un spectru de linii cu o structură descrisă empiric de regula de combinare Rydberg-Ritz (1905). Preluând ipoteza existenței cuantelor de lumină, completată cu un postulat potrivit căruia energia atomului este distribuită pe nivele discrete descrise de un număr cuantic, Bohr (1913) a elaborat un model atomic care elimina aceste dificultăți; confirmarea experimentală a existenței nivelelor discrete de energie în cadrul atomului a fost făcută în 1914 prin experimentul Franck-Hertz.

Realizările în teoria structurii atomului din perioada 1900–1924 au primit numele de „teorie cuantică veche”. Este vorba de fapt de un ansamblu de reguli de cuantificare arbitrare, aplicabile sistemelor multiperiodice din mecanica clasică și ghidate de principiul de corespondență. Formulat explicit de Bohr abia în 1920, acesta din urmă cerea ca, la limita numerelor cuantice mari, teoria cuantică să reproducă rezultatele teoriei clasice. Modelul atomic Bohr-Sommerfeld (1916–1919) rezultat din teoria cuantică veche a permis evaluarea corectă a termenilor spectrali pentru un număr mare de atomi și molecule; teoria conținea însă lacune și contradicții.


Mecanica matricială, mecanica ondulatorie, mecanica cuantică 



O analiză critică a teoriei cuantice vechi l-a condus pe Heisenberg la concluzia că noțiunea de traiectorie a unui electron în atom este lipsită de sens, și că o teorie atomică trebuie construită numai pe baza unor mărimi observabile, cum sunt frecvențele și intensitățile liniilor spectrale. Noua teorie propusă de Heisenberg (1925) și dezvoltată de el împreună cu Born și Jordan a fost numită mecanică matricială. Interpretarea statistică a teoriei a fost dată de Born (1926); o consecință importantă a teoriei a fost prezentată de Heisenberg ca principiul incertitudinii. Implicațiile ei privitor la limitele cunoașterii realității fizice, dezbătute în anii următori de Bohr și Heisenberg, au rămas cunoscute sub numele de interpretarea de la Copenhaga.

În căutarea unei baze pentru o teorie unificată a materiei și radiației, Louis de Broglie (1924) a extins conceptul de dualitate undă-corpuscul de la radiație la materie, făcând sugestia că unei particule microscopice îi este asociat un fenomen ondulatoriu. Ipoteza existenței unor „unde de materie” a fost punctul de plecare pentru o teorie atomică propusă de Schrödinger (1925) sub numele de mecanică ondulatorie; în anul următor tot Schrödinger a arătat că ea era echivalentă cu mecanica matricială a lui Heisenberg. Proprietățile ondulatorii ale electronilor au fost confirmate de experimentul Davisson-Germer (1927).

La a cincea Conferință Solvay despre electroni și fotoni (1927), mecanica cuantică a fost consacrată ca teorie a materiei la scară atomică. Conferința a marcat și punctul culminant al unei dezbateri, care avea să dureze mai mulți ani, între Einstein (care atribuia caracterul statistic al mecanicii cuantice faptului că ar fi fost o teorie incompletă) și Bohr (care, de pe pozițiile interpretării de la Copenhaga, susținea că ea dă o descriere completă a realității). Formularea generală a teoriei, în care aspectele de mecanică matricială și mecanică ondulatorie rezultă dintr-un formalism matematic unic, a fost dată de Dirac (1930).

Teoria cuantică relativistă 


Dirac (1928) a propus o teorie a electronului, compatibilă atât cu principiile mecanicii cuantice cât și cu teoria relativității. Pornind de la aceste principii fundamentale, ecuația lui Dirac explica existența spinului electronic, care în teoria nerelativistă a lui Pauli (1927) trebuia postulată, și descria corect structura hiperfină a liniilor spectrale. Ea indica și existența unor stări de energie negativă, care au fost reinterpretate ca stări ale unei particule ipotetice având aceeași masă ca electronul dar sarcină electrică opusă. Particula a fost observată în camera cu ceață de Anderson (1932), care a numit-o pozitron. Posibilitatea creării/anihilării de perechi electron-pozitron, concomitent cu absorbția/emisia de fotoni, iese din cadrul mecanicii cuantice, în care numărul de particule materiale este considerat constant. Noua teorie a interacției dintre materie și radiație propusă de Dirac a fost numită de acesta electrodinamică cuantică. Ea a fost elaborată în formă definitivă, ca teorie cuantică relativistă a interacției dintre electroni și fotoni, în mod independent, de Tomonaga,Schwinger și Feynman (1946–1949); echivalența celor trei formulări a fost demonstrată de Dyson (1949).


Principiile mecanicii cuantice


Funcție de stare și spațiu Hilbert 



În mecanica cuantică o stare dinamică a unui sistem atomic este descrisă cantitativ de o funcție de stare (numită, într-o formulare particulară, funcție de undă). Comportarea ondulatorie a sistemelor atomice arată că stările lor ascultă de principiul superpoziției; pe plan teoretic, aceasta înseamnă că funcțiile de stare sunt elemente ale unui spațiu vectorial.

Pentru interpretarea fizică a funcției de stare e necesar ca vectorii din spațiul stărilor să poată fi caracterizați prin orientare și mărime. Acest lucru se realizează definind un produs scalar, ceea ce transformă spațiul stărilor într-un spațiu prehilbertian. Produsul scalar a doi vectori și este un număr complex cu proprietățile

unde asteriscul denotă conjugata complexă. Mărimea pozitivă

se numește norma vectorului

În general, spațiul stărilor este infinit-dimensional; pentru a putea cuprinde în totalitate stările sistemului, se impune condiția ca el să fie complet, ceea ce îl face să devină un spațiu Hilbert.


Observabile și operatori hermitici 


Starea unui sistem, la un anumit moment, este caracterizată prin valorile măsurate, în acel moment, ale unui număr de mărimi fizice observabile. Analiza operației de măsurare arată că măsurarea unei observabile modifică starea sistemului, iar măsurarea simultană (adică în succesiune imediată) a două observabile poate da rezultate diferite, în funcție de ordinea în care au fost efectuate măsurătorile. Teoria incorporează aceste constatări atașând fiecărei dintre observabilele ale sistemului un operator liniar în spațiul Hilbert, operației de măsurare a observabilei corespunzându-i aplicarea operatorului reprezentativ asupra funcției de stare. Algebra acestor operatori este necomutativă, adică în general comutatorul a doi operatori și notat este operatorul

Două observabile și se numesc compatibile dacă operatorii atașați comută (comutatorul lor este nul).


Valori proprii și vectori proprii


Se mai face ipoteza că valoarea rezultată din măsurarea unei observabile este una dintre valorile proprii ale operatorului atașat, iar starea sistemului imediat după efectuarea măsuratorii este un vector propriu corespunzător acestei valori; întrucât observabilele au valori reale, operatorii reprezentativi trebuie să fie operatori hermitici. Un operator liniar este un operator hermitic dacă pentru orice pereche de vectori și din spațiul Hilbert are loc relația

Ecuația liniară omogenă

unde este o constantă, are soluții nebanale (adică diferite de vectorul nul) doar pentru anumite valori ale acestei constante, numite valori proprii ale operatorului iar soluțiile corespunzătoare se numesc vectori proprii.

Din relațiile (1) și (4) rezultă că într-adevăr valorile proprii ale unui operator hermitic sunt numere reale; mulțimea tuturor valorilor proprii constituie spectrul operatorului. Spectrul este în general discret, adică o mulțime numărabilă, ale cărei elemente pot fi indexate printr-un număr întreg, în forma Vectorii proprii corespunzători unor valori proprii diferite sunt ortogonali: dacă și sunt vectori proprii corespunzători, respectiv, valorilor proprii atunci Unei valori proprii îi pot corespunde mai mulți vectori proprii liniar independenți, în care caz ea se zice degenerată, iar numărul maxim de vectori proprii liniar independenți care îi corespunde este ordinul de degenerare; fenomenul se numește degenerescență. Acești vectori nu sunt, în general, ortogonali, însă există metode de ortogonalizare prin care se poate construi, în subspațiul invariant asociat unei valori proprii degenerate, un sistem echivalent de vectori ortogonali. Împărțind fiecare vector propriu prin norma sa, se obține un sistem ortonormat complet de vectori proprii, caracterizat prin

unde e simbolul Kronecker (care are valoarea 1 pentru indici egali și 0 pentru indici diferiți).

Dacă două observabile și comută, ele admit (cel puțin) un sistem ortonormat complet comun de vectori proprii — și reciproc. În prezența degenerescenței, acest sistem nu este, în general, unic. Se poate însă găsi un ansamblu de observabile care comută două câte două și admit un sistem ortonormat complet unic de vectori proprii; este ceea ce se numeste un sistem complet de observabile care comută.

Complementaritate și cauzalitate 



Caracterul abstract al formalismului mecanicii cuantice și descrierea statistică bazată pe funcția de stare au generat obiecții: funcția de stare nu ar conține o descriere completă a realității fizice, caracterul statistic ar rezulta din ignorarea unor variabile ascunse, relațiile de incertitudine ar exprima o nedeterminare a stării sistemului, reducerea funcției de stare ar constitui o violare a principiului cauzalității. De pe pozițiile interpretării de la Copenhaga, Bohr a răspuns la aceste obiecții printr-o analiză detaliată a procesului de măsurare.

Descrierea fenomenelor la scară atomică este făcută utilizând terminologia fizicii clasice, pe baza unor date de observație obținute cu ajutorul unor instrumente macroscopice, a căror stare se presupune că rămâne neschimbată în cursul operației de măsurare. În realitate, la scară atomică nu se poate face o distincție precisă între fenomenul observat și instrumentul de măsură, întrucât procesul de observare implică o interacție, în urma căreia starea ambelor sisteme este modificată. În consecință, rezultatele observațiilor făcute în condiții diferite nu pot fi asamblate într-o imagine unitară, din punctul de vedere al fizici clasice: ele sunt complementare. Dualismul particulă-undă și relațiile de incertitudine poziție-impuls sunt manifestări ale acestei complementarități.

Principiul cauzalității se aplică, riguros, doar sistemelor izolate; de aceea, în cazul unei operații de măsurare trebuie luat în considerare, odată cu fenomenul observat, și instrumentul de măsură. În cursul unei operații de măsură, starea întregului sistem (sistemul observat plus instrumentul de măsură) evoluează strict cauzal, conform ecuației lui Schrödinger. Reducerea funcției de stare a sistemului observat este rezultatul interacției cu instrumentul de măsură, care e imprevizibilă și incontrolabilă, de vreme ce funcția de stare totală nu e cunoscută. Această manifestare a principiului cauzalității la scară atomică nu vine în contradicție cu faptele experimentale.

În contextul interpretării statistice de la Copenhaga (funcția de stare se referă nu la un exemplar unic al sistemului fizic considerat, ci la un colectiv statistic de exemplare, toate aflate în aceeași stare la un moment inițial), mecanica cuantică este strict deterministă (funcția de stare dă descrierea completă a stării sistemului la orice moment ulterior). „Indeterminismul” relevat de alte școli de gândire se referă la complementaritatea inerentă a acesei descrieri și este rezultatul ignorării fenomenului de reducere a funcției de stare în urma unei operații de măsură.